It can be used to specify either a prior distribution for a model parameter or a likelihood function for an observation model.
Gaussian(mu, sigma, ordered = NULL, equal = NULL, bounds = list(NULL, NULL), trunc = list(NULL, NULL), k = NULL, r = NULL, param = NULL, ...)
mu | Either a fixed value or a prior density for the location parameter. |
---|---|
sigma | Either a fixed value or a prior density for the shape parameter. |
ordered | (optional) A logical setting an increasing ordering constraint on any univariate parameter and any unconstrained parameter vector. Ordered simplices (e.g. |
equal | (optional) A logical setting whether the parameter takes the same value in every hidden state, i.e. the parameter is shared across states. It defaults to unequal parameters. |
bounds | (optional) A list with two elements specifying the lower and upper bound for the parameter space. Use either a fixed value for a finite bound or NULL for no bounds. It defaults to an unbounded parameter space. |
trunc | (optional) A list with two elements specifying the lower and upper bound for the domain of the density function. Use either a fixed value for a finite bound or NULL for no truncation. It defaults to an unbounded domain. |
k | (optional) The number of the hidden state for which this density should be used. This argument is mostly for internal use: you should not use it unless you are acquainted with the internals of this software. |
r | (optional) The dimension of the observation vector dimension for which this density should be used. This argument is mostly for internal use: you should not use it unless you are acquainted with the internals of this software. |
param | (optional) The name of the parameter. This argument is mostly for internal use: you should not use it unless you are acquainted with the internals of this software. |
... | Other arguments for the density. |
A Density
object.
Betancourt, Michael (2017) Identifying Bayesian Mixture Models Stan Case Studies Volume 4. Link.
Other Density: Bernoulli
, Beta
,
Binomial
, Categorical
,
Cauchy
, CholeskyLKJCor
,
Density
, Dirichlet
,
Exponential
, GammaDensity
,
ImproperUniform
,
InitialFixed
, InitialSoftmax
,
InverseWishart
,
MVGaussianCholeskyCor
,
MVGaussian
, MVStudent
,
Multinomial
,
NegativeBinomialLocation
,
NegativeBinomial
, Poisson
,
RegBernoulliLogit
,
RegBinomialLogit
,
RegBinomialProbit
,
RegCategoricalSoftmax
,
RegGaussian
, Student
,
TransitionFixed
,
TransitionSoftmax
, Wishart
# With fixed values for the parameters Gaussian(0, 1)#> Variable Density: Gaussian (-infty, infty) #> Fixed parameters: 2 (mu = 0, sigma = 1)# With priors for the parameters Gaussian( mu = Gaussian(mu = 0, sigma = 10), sigma = Cauchy(mu = 0, sigma = 10, bounds = list(0, NULL)) )#> Variable Density: Gaussian (-infty, infty) #> Free parameters: 2 (mu, sigma) #> mu : #> Variable Density: Gaussian (-infty, infty) #> Fixed parameters: 2 (mu = 0, sigma = 10), #> sigma : #> Variable Density: Cauchy [0, infty) #> Fixed parameters: 2 (mu = 0, sigma = 10)