R/densityCategorical.R
Categorical.RdIt can be used to specify either a prior distribution for a model parameter or a likelihood function for an observation model.
Categorical(theta = NULL, N = NULL, ordered = NULL, equal = NULL, bounds = list(NULL, NULL), trunc = list(NULL, NULL), k = NULL, r = NULL, param = NULL)
| theta | Either a fixed value or a prior density for the success proportion vector parameter. |
|---|---|
| N | An integer with the number of trials (fixed quantity). |
| ordered | (optional) A logical setting an increasing ordering constraint on any univariate parameter and any unconstrained parameter vector. Ordered simplices (e.g. |
| equal | (optional) A logical setting whether the parameter takes the same value in every hidden state, i.e. the parameter is shared across states. It defaults to unequal parameters. |
| bounds | (optional) A list with two elements specifying the lower and upper bound for the parameter space. Use either a fixed value for a finite bound or NULL for no bounds. It defaults to an unbounded parameter space. |
| trunc | (optional) A list with two elements specifying the lower and upper bound for the domain of the density function. Use either a fixed value for a finite bound or NULL for no truncation. It defaults to an unbounded domain. |
| k | (optional) The number of the hidden state for which this density should be used. This argument is mostly for internal use: you should not use it unless you are acquainted with the internals of this software. |
| r | (optional) The dimension of the observation vector dimension for which this density should be used. This argument is mostly for internal use: you should not use it unless you are acquainted with the internals of this software. |
| param | (optional) The name of the parameter. This argument is mostly for internal use: you should not use it unless you are acquainted with the internals of this software. |
A Density object.
Betancourt, Michael (2017) Identifying Bayesian Mixture Models Stan Case Studies Volume 4. Link.
Other Density: Bernoulli, Beta,
Binomial, Cauchy,
CholeskyLKJCor, Density,
Dirichlet, Exponential,
GammaDensity, Gaussian,
ImproperUniform,
InitialFixed, InitialSoftmax,
InverseWishart,
MVGaussianCholeskyCor,
MVGaussian, MVStudent,
Multinomial,
NegativeBinomialLocation,
NegativeBinomial, Poisson,
RegBernoulliLogit,
RegBinomialLogit,
RegBinomialProbit,
RegCategoricalSoftmax,
RegGaussian, Student,
TransitionFixed,
TransitionSoftmax, Wishart
# With fixed values for the parameters Categorical( theta = c(0.2, 0.4, 0.1, 0.3), N = 4 )#> Variable Density: Categorical (-infty, infty) #> Fixed parameters: 1 (theta = [0.2, 0.4, 0.1, 0.3])#> Variable Density: Categorical (-infty, infty) #> Free parameters: 1 (theta) #> theta : #> Variable Density: Dirichlet (-infty, infty) #> Fixed parameters: 1 (alpha = [1, 1, 1, 1])