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Motivating example (1)

We compute the daily log-returns of SPY from 1993-01-01 to 2018-05-18. ..

library(doParallel)
library(quantmod)
library(moments)
library(rstan)
library(xts)
source("R/cache.R")
source("R/plots.R")
source("R/models.R")

rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())

p <- getSymbols(

"SPY",

src = "yahoo",

from = "1993-01-01",
to = "2018-05-18",
auto.assign = FALSE

y <- na.omit(ROC(log(Cl(p)), n = 1, type = "continuous"))

R/Finance 2018 Chicago, IL 2/46



Motivating example (2)

. and we analyze a deterministic volatility model from the Bayesian point of view.

fit <- stan(

file = "stan/garchll.stan",
data = list(
T = length(y), # Length of the series
H =1, # Produce H-step-ahead forecast
y = as.numeric(y), # The observed series (daily log-returns)
sigmal = sd(y) # The conditional volatility at t = 1
),
chains = 4,
iter = 500,
warmup = 250,
seed = 9000,
verbose = FALSE
)
shat <- apply(extract(fit, pars = "sigma")[[1]], 2, median)
spred <- extract(fit, pars = "spred")[[1]]
ypred <- extract(fit, pars = "ypred")[[1]]
sfore <- extract(fit, pars = "sfore")[[1]]
yfore <- extract(fit, pars = "yfore")[[1]]
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Bayesian Workflow
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Scientific problem

We would like to measure and forecast daily volatility in stock prices.
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Substantive knowledge

What do we know about returns and volatility? (Cont 2001)

= Unconditional heavy tails

= Gain/loss asymmetry (except for foreign exchange rates)

= Shape of distribution changes with time scale

= Volatility clusters

= Conditional heavy tails (after correcting for volatility clustering)
= Slow decay of autocorrelation in absolute/squared returns

= Leverage effect

= Others

Use the model and/or priors to formally account for your
substantive knowledge
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Exploratory Data Analysis

A method to build a network of increasingly complex
models that capture features and heterogeneities present
in the data (Gelman 2004).

What are the possible sources of heterogeneity?

= Non-linearity

= Time-varying properties/relationships (coefficients)
= Hierarchies

= Clusters

= Latent variables (ex. latent states)
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Model (1)

GARCH model introduced by Engle (1982) and Bollerslev (1986).

Yt NN(O,O’%)
2 _ 2 2
o =ag+oryf 1+ Por_q

where o2 is the conditional variance at time t, y; is the (de-filtered)
log-return at time t.

Parameter constraints: ag > 0, a3, 3 > 0, a1 + 8 < 1 so that the unconditional variance is finite and positive
and the conditional variance is positive.
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Interpretation (Alexander 2008):

= Error parameter: «; measures the reaction of conditional
volatility to market shocks. The larger the coefficient, the more
sensitive to unexpected movements in prices.

= Lag parameter: 5 measures the persistence in conditional
volatility. The larger the coefficient, the longer it takes for
volatility to die out.

= Rate of convergence: a; +  measures how quickly
conditional volatility converges to long-term average. The
closer to one, the slower the convergence.
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Generative model

The predictive prior distribution p(y) is the distribution of the
unknown but observable y before considering our sample.

/p(y, d9—/p p(y|0)d

= Generative models: Bayesian models with proper priors.

= Goal: To understand the model structure before making the
measurements.

= Methodology: Visualize simulations from the prior marginal
distribution and assess consistency between chosen priors and domain
knowledge.

= Recommendations (Gabry et al. 2017):

= At least some mass around extreme but plausible data sets (ex. extreme log-returns).
= No mass on completely implausible values (ex. negative prices or volume).
= Beware commonly recommended “vague priors” may not make sense in the application.
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Generative model - An example

fit <- stan(

file = "stan/garchligen.stan",

data = list(
T = 252 * 10, # Simulate a 10-year long sample
sigmal = 0.0025 # Arbitrary value

),

chains = 4,

iter = 500,

warmup = 250,

seed = 9000,

verbose = FALSE

spred <- extract(fit, pars = "spred")[[1]]
ypred <- extract(fit, pars = "ypred")[[1]]
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Generative model - Data and parameters

data {
int<lower=0> T;

real<lower=0> sigmal;

parameters {
real<lower=0> alphaO;
real<lower=0, upper=1> alphal;
real<lower=0, upper=(l-alphal)> betal;

Note: there is no sample vector in the data block! We have not seen the dataset as of now.
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Generative model - Model and priors

model {
// Priors
alpha0 ~ normal(0, 0.5) T[0, ]; // close to zero and small
alphal ~ beta(0.50, 1.50); // slightly more likely to be close to zero
betal ~ beta(2.50, 0.80); // slightly more likely to be close to one
&

From previous experience, we expect that:

= g > 0 is very close to zero.
= a3 > 0is close to zero, with values above 0.1 being “relatively large”.

= (3> 0is close to one, with commonly-seen values in the range
0.70/0.99.

Note:

= There are no calls to sampling statements (log-likelihood) in the model block.
= Independent priors for each parameter do not account for constraints. Stan will take care of that for us :).
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Generative model - Model and priors

ao ~ Normal(0, 0.5) a; ~B(0.5,1.5) B~B(2.5,0.8)
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Weakly informative priors: although we use information from
previous empirical studies to regularize and stabilize the density,

we are conservative.
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Generative model - An example

generated quantities {
real<lower=0> spred[T];
real ypred[T];

spred[1]
ypred[1] = normal_rng(0, sigmal);
for (t in 2:T) {
spred[t] = sqrt(
alphaO
+ alphal * pow(ypred[t-1], 2)
+ betal * pow(spred[t-1], 2)

sigmal;

)3
ypred[t] = normal_rng(0, spred[t]);
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Generative model - An example

Log-returns

Autocorrelation (squared log-returns)
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Software validation

Before we analyze any estimates, we need to confirm that our
software works as intended (Cook, Gelman, and Rubin 2006). For
i€l ..., N replications:

1. Draw one sample of the parameter vector 8() from the prior
distributions p(#).

2. Draw one sample of the observation vector y{/) from the
sampling distribution p(y|6()).

3. Use Stan to estimate the model parameters.

4. Can the software recover the true parameters systematically?

= Are the estimates reasonable (for example, do they take impossible values)?
= |s there any bias (systematic error in estimation)?
= |s the true value adequately covered by the posterior intervals?
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Software validation - Step 1

o)

simParams <- function() {

¥

alphaO = abs(rnorm(n = 1, mean = 0, sd = 0.
alphal = rbeta(n = 1, shapel = 0.5, shape2
betal = rbeta(n = 1, shapel = 2.5, shape2
sigmal = rexp(n = 1) / 100
if (alphal + betal >= 1) {

simParams ()
} else {

c(sigmal, alphaO, alphal, betal)
}
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Software validation - Step 2

YD ~ p(y]6™)

simGARCH11 <- function(T, sigmal, alphaO, alphal, betal) {
if (sigmal <= 0) { stop("Please use a positive sigma for the first step.")}
if (alpha0 <= 0) { stop("Alpha0 must be greater than zero.") }
f (min(alphal, betal) < 0) { stop("Alphal and Betal can't be negative.") }
if (alphal + betal >= 1) { stop("Alphal + Betal cannot be equal to or exceed one.") }

e

y <- vector(mode = "numeric", length = T)
s <- vector(mode = "numeric", length = T)

s[1] <- sigmal

y[1] <- rnorm(n = 1, mean = 0, sd = s[1])

for (t in 2:T) {
s[t] <- sqrt(alphaO + alphal * y[t - 1172 + betal * s[t - 1]172)
y[t] <- rnorm(n = 1, mean = 0, sd = s[t])

}

return(y)
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Software validation - Step 3

N <- 100
set.seed(9000)
fitfakes <- lapply(1:N, function(i) {
params <- simParams()
yfake <- simGARCH11(252 * 10, params[1], params[2], params[3], params[4])

fit <- stan(
file = "stan/garchll.stan",
data = list(
T = length(yfake), # Length of the series
H =1, # Produce H-step-ahead forecast
y = as.numeric(yfake), # The observed series (daily log-returns)
sigmal = params[1] # The conditional volatility at t = 1
),
chains = 4,
iter = 500,
warmup = 250,
seed = 9000,
verbose = FALSE
)
list(

true = params,
estimates = extract(fit, pars = c("alpha0", "alphal", "betal"))

»
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Software validation - Step 4
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Software validation - Step 4

True

alpha0

Estimate
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Software validation - Step 4

Other diagnostics:

= The 95% posterior intervals for the parameters ap, a1, and 3
contain the true value in the 89, 97, 93 percent of samples
respectively.

= All values for the estimated parameters are within the restricted
parameter space.

= MCMC chains mix well®.

1See, for example Bayesplot
R/Finance 2018 Chicago, IL 23/46


http://mc-stan.org/bayesplot/reference/MCMC-diagnostics.html

Model diagnostics

After constructing a probability model and computing the posterior
distribution, we assess the fit of the model to the data and our

substantive knowledge.

= Have we included all our knowledge about the problem?
= What aspects of reality are not captured by the model?
= Suspects: priors, likelihood, model structure, explanatory

variables.
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Model diagnostics

= Sensitivity analysis: how much does posterior inference
change when other reasonable priors and/or models are used?

= Judge by practical implication: there is no true model.

= Does inference make sense?

= Not all knowledge is included formally in the model.
= Use the substantive leftovers to analyze the results.

= External validation: predict future data and compare with

future observations.
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Posterior predictive checks

If the model fits, replicated data generated under the
model should look similar to observed data. To put it
another way, the observed data should look plausible under
the posterior predictive distribution (Gelman et al. 2013).

= A self-consistency check.
= A data-informed data generating model.
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Posterior predictive checks

The posterior predictive distribution:

p™ly) = [ Pl 1)p(6ly)ds

= Fit a model p(f|y) to an observed sample y.

= Draw S simulated values y™P (“replications”) from the joint
posterior predictive distribution p(y™|y).

» Define a statistic T(y) that measures the discrepancy between
model and data.

= Compare the generated samples to the observed data.

Any systematic differences between the simulations and the
data indicate potential failings of the model.
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How to chose the quantity T

A model can fail to reflect the data generating process in
any number of ways. Compare a variety of statistics to
evaluate more than one possible model failure (Gelman et
al. 2013).

= Choose a quantity that reflects aspects relevant to the scientific
purpose.

= Especially useful to measure features of data not directly addressed
by the model (ex. ranks, correlations, relationships with explanatory
variables).

= Discard sufficient statistics because we look for features not
explicitly included in the model. Choose statistics that are orthogonal
to model parameters instead.
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How to compare the quantity T

= Numerically:

= Compare the magnitude T (y,0°) — T(y"Ps,0°).

= Compute the probability of the replicated data being more
extreme than the observed data
Pr(T(y,0%) < T(y™*,0°)) ¥Ys=1,...,5.

= Graphically:

= Histogram of T(y,6%) — T(y"P %, 6°) should include zero.
= Scatterplot T(y,0%) ~ T(y"™P*,60°) should be symmetric about
the 459 line.
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Posterior predictive check - An example

fit <- stan(

file = "stan/garchll.stan",
data = list(
T = length(y), # Length of the series
H =1, # Produce one-step ahead forecast
y = as.numeric(y), # The observed series (daily log-returns)
sigmal = sd(y) # The conditional volatility at t = 1
),
chains = 4,
iter = 500,
warmup = 250,
seed = 9000,
verbose = FALSE
)
shat <- apply(extract(fit, pars = "sigma")[[1]], 2, median)
spred <- extract(fit, pars = "spred")[[1]]
ypred <- extract(fit, pars = "ypred")[[1]]
sfore <- extract(fit, pars = "sfore")[[1]]
yfore <- extract(fit, pars = "yfore")[[1]]
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Posterior predictive check - An example

transformed parameters {
real<lower=0> sigmal[T];
sigma[1] = sigmai;
for (t in 2:T) {
sigma[t] = sqrt(
alphaO
+ alphal * pow(y[t-1], 2)
+ betal * pow(sigma[t-1], 2)

)5
¥
}
model {
// Priors
alphaO ~ normal(0, 0.5) T[0O, 1; // close to zero and small
alphal ~ beta(0.50, 1.50); // slightly more likely to be close to zero
betal ~ beta(2.50, 0.80); // slightly more likely to be close to one

// Sampling (likelihood)
y ~ normal(0, sigma);
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Posterior predictive check - An example

generated quantities {
real<lower=0> sfore[H];
real<lower=0> spred[T];
real yforel[H];
real ypred[T];

for (h in 1:H) {
sfore[h] = sqrt(
alpha0
+ alphal * pow(y[T + h - 1], 2)
+ betal * pow(sigmal[T + h - 1], 2)
)5

yfore[h] = normal_rng(0, sfore[h]);
}

spred[1] = sigmal;
ypred[1] = normal_rng(0, sigmal);
for (t in 2:T) {
spred[t] = sqrt(
alphaO
+ alphal * pow(ypred[t-1], 2)
+ betal * pow(spred[t-1], 2)
)5
ypred[t] = normal_rng(0, spred[tl);
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ed vs. posterior predictive returns
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Observed vs. posterior predictive quantities (1)
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Observed vs. posterior predictive quantities (2)
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Out-of-sample forecast evaluation

Methodology for walking-forward validation:

= Extract subsamples using a rolling window with 2520
observations each (approximately ten trading years).

= Estimate the parameters 0 for each daily subsample.?

» Compute the h-step ahead forecast for volatility 6. p;.

= Draw a sample from the expected distribution of
log-returns y; 4. ~ N (0,6 t+h|t)

Outcome;

= Volatility forecasts (accounting for parameter uncertainty!)
= A full distribution of forecasted log-returns (accounting for

parameter uncertainty as well).

2In some settings, you may consider fitting the model each k steps.
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Parameter uncertainty

SPY [2015-01-07/2018-05-16]
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Distribution of expected return

We draw an arbitrary

Kernel large sample of expected

8 - e Tail (5%) A

—— Expected Shortfall Iog—returns yt+1|t and use
this empirical distribution

L to analyze risk:
- | = Mean/median log-returns.
B II = Standard deviation, interquartile
range.
o ‘__- | ; ; ; . = Kurtosis.
0005 000 o002 o000 0002 o008 + Quantiles (ex. VaR).

Log-returns

= Tail characteristics (ex. conditional
mean for ES).
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Coverage ratio

How many times does the (ex-post) observed log-return exceed our 1 — « forecast interval?

SPY [2015-01-07/2018-05-16 — Out of sample]
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Value at Risk

How many times does the (ex-post) observed log-return exceed our o VaR?

SPY [2015-01-07/2018-05-16 — Out of sample]
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Expected S

How does the (ex-post) observed log-return compare with our aw ES?

SPY [2015-01-07/2018-05-16 — Out of sample]
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Recap (1)

We studied the minimum suggested steps in the Bayesian workflow:

= State your scientific problem.

= Gather substantive knowledge (literature review, previous empirical
studies, ask experts).

= Use exploratory data analysis to hypothesize about possible sources
of heterogeneity.

= Set up a generative model (in Stan).

= Parameter constraints and priors only, no observations yet.

= Use priors to express beliefs and substantive knowledge, and to
regularize and stabilize estimates.

= Does data generated by the model produce the sought features?
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Recap (2)

= Software validation

= Now consider the likelihood: add sampling statements to your
Stan code.

= Generate “fake data” compliant with model specification, if
possible using a different implementation (a “unit test” of
sorts).

= Does the model systematically recover the true parameters?

= Are the estimates pausible and reasonable?

= Do posterior intervals achieve the adequate coverage?

= Consider the sample to estimate the parameters and other hidden
quantities.
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= Diagnose your model

= MCMC: assess mixing with the R statistic, the effective sample
size, traceplots and divergences.

= Sensitivity analysis: how much posterior inference change when
other reasonable priors and/or models are used?

= Use posterior predictive checks: does the model replicate data
features that are explicitely modeled? does it replicate features
not modeled?

= External validation (out-of-sample prediction): check coverage
using walking-forward validation.
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Next steps?

If you enjoyed the seminar, you should be reading. ..

= More about covered topics:

= Stan (Team 2017; Carpenter et al. 2017).
= Bayesian Inference (Gelman et al. 2013; McElreath 2015).
= Volatility Models (Alexander 2008; Tsay 2010; Christoffersen

2016).
= Moving forward:

= Bayesian Time Series, State Space Models, Bayesian Filtering
(Prado and West 2010; Sarkka 2013).
= Bayes & Risk (Jacquier, Polson, and Rossi 2002; Lopes and

Tsay 2010).
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