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1 Markov chains

1.1 Definitions

Let z1:T = {z1, . . . , zT } be a sequence of regularly spaced observations of arbitrary length T . The index
t = 1, . . . , T reflects discrete time or space steps. The sequence of random variables has the Markovian
property if the probability of moving to the next state depends only on the present state and not on the
previous ones.

1.2 Transition function (joint distribution)

Let p(zt|zt−m:t−1) be the transition function, where m is finite. Assuming the conditional probabilities are
well defined, the joint distribution of a Markov chain of order m, or a Markov chain with memory m, given
the parameters θ can be derived with the chain rule of probability

p(z1:T ) = p(z1:m)
T∏

t=m+1
p(zt|zt−m:t−1),

where conditioning on the fixed parameters θ was removed to increase readability.

For first-order Markov chains, by the chain rule of probability, the expression simplifies to

p(z1:T ) = p(z1)p(z2|z1)p(z3|z2) . . . p(zT |zT−1) = p(z1)
T∏
t=2

p(zt|zt−1).

When the transition function is independent of the step index, the chain is called homogeneous, stationary, or
time-invariant and the parameters are shared by multiple variables.

If the observed variable only takes one of K possible values, so that zt ∈ S = {1, . . . ,K}, the model is called
a discrete-state or finite-state Markov chain. The possible values of zt form a countable set S called the state
space of the chain.

1.3 Transition matrix for a finite-state Markov chain (conditional distribution)

In the context of a finite-state Markov chain, the one-step transition matrix A is a K ×K stochastic matrix
with elements Aij = p(zt = j|zt−1 = i) with i, j ∈ S that satisfies

∑
j Aij = 1 for all rows i and 0 ≤ Aij ≤ 1

for all entries i, j. Each element specifies the probability of transition from i to j in one step. Given the
constraints, the matrix has K(K − 1) independent parameters.

The n-step transition matrix A(n) has elements Aij(n) = p(zt+n = j|zt = i) representing the probability of
getting from i to j in exactly n steps. By definition, A(1) = A. By the Chapman-Kolmogorov equations,

Aij(n+ s) =
K∑
l=1

Ail(n)Ajl(s),
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the probability of transitioning from i to j in exactly n+ s steps is the probability of getting from i to l in n
steps and then from l to j in s steps, summed up over all l. Since this is equivalent to matrix multiplication,

A(n+ s) = A(n)A(s),

multiple steps can be naturally computed by exponentiation

A(n) = A(1)A(n− 1) = A(1)A(1)A(n− 2) = · · · = An.

1.4 State probabilities (marginal distribution)

Let πt(j) = p(zt = j) be the probability that the random variable is in state j at the step t and π be a row
vector called the state probability vector. Given the initial state distribution π0, the state probabilities for
the next step can be computed by π1 = π0A.

A chain is said to have reached its stationary, invariant or equilibrium distribution when the following
condition becomes true after many iterations

π = πA.

This distribution does not always exist, but if does, the process cannot leave after entering this stage. There
are different ways to prove if a chain is stationary, the most popular set of necessary conditions include
irreducibility, recurrency and a limiting distribution that does not depend on the initial values, which in turns
requires aperiodicity. The equilibrium is characterized by the the global balance equations. We refer to Doob
(1953) for a detailed study on the existence of a stationarity distribution and its computation.

2 Hidden Markov Models

Real-world processes produce observable outputs characterized as signals. These can be discrete or continuous
in nature, be pure or contaminated with noise, come from a stationary or non stationary source, among
many other variations. These signals are modelled to allow for both theoretical descriptions and practical
applications. The model itself can be deterministic or stochastic, in which case the signal is well characterized
as a parametric random process whose parameters can be estimated in a well-defined manner.

Autocorrelation, a key feature in most signals, can be modelled in countless forms. While certainly pertinent
to this purpose, high order Markov chains can prove inconvenient when the range of the correlation amongst
the observations is long. A more parsimonious approach assumes that the observed sequence is a noisy
observation of an underlying hidden process represented as a first-order Markov chain. In other terms,
long-range dependencies between observations are mediated via latent variables. It is important to note that
the Markov property is only assumed for the hidden states and not for the observations themselves.

2.1 Model specification

HMM involves two interconnected models. The state model consists of a discrete-time, discrete-state,
first order hidden Markov chain zt ∈ {1, . . . ,K} that transitions according to p(zt|zt−1). Additionally,
the observation model is governed by p(xt|zt), where xt are the observations, emissions or output. The
corresponding joint distribution is

p(z1:T ,x1:T ) = p(z1:T )p(x1:T |z1:T ) =
[
p(z1)

T∏
t=2

p(zt|zt−1)
][

T∏
t=1

p(xt|zt)
]
.
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It is a specific instance of the state space model family in which the latent variables are discrete. Each single
time slice corresponds to a mixture distribution with component densities given by p(xt|zt), thus HMM may
be interpreted as an extension of a mixture model in which the choice of component for each observation
is not selected independently but depends on the choice of component for the previous observation. In the
case of a simple mixture model for an independent and identically distributed sample, the parameters of
the transition matrix inside the i-th column are the same, so that the conditional distribution p(zt|zt−1) is
independent of zt−1.

When the output is discrete, the observation model commonly takes the form of an observation matrix

p(x = l|zt = k,θ) = B(k, l).

Alternatively, if the output is continuous, the observation model is frequently a conditional Gaussian

p(xt|zt = k,θ) = N (xt|µk,Σk).

The latter is equivalent to a Gaussian mixture model with cluster membership ruled by Markovian dynamics,
also known as Markov Switching Models (MSM). In this context, multiple sequential observations tend to
share the same location until they suddenly jump into a new cluster.

2.2 Characteristics

By specification of the latent model, the density function of the duration τ in state i is given by

pi(τ) = (Aii)τ (1−Aii) ∝ exp(−τ lnAii),

which represents the probabily that a sequence spends precisely τ steps in state i. The expected duration
conditional on starting in that state is

τ̄i =
∞∑
τ=1

τpi(τ) = 1
1−Aii

.

The density is an exponentially decaying function of τ , thus longer durations are more probable than shorter
ones. In applications where this proves unrealistic, the diagonal coefficients of the transition matrix Aii ∀ i
may be set to zero and each state i is explicitely associated with a probability distribution of possible duration
times p(τ |i) (Rabiner 1990).

One of the most powerful properties of HMM is the ability to exhibit some degree of invariance to local
warping of the time axis. Allowing for compression or stretching of the time, the model accommodates for
variations in speed.

2.3 Inference

There are several quantities of interest to be inferred from different algorithms. These are summarized in the
following table. In this section, the discussion assumes that model parameters θ are known.

Table 1: Summary of the quantities that can be inferred and their
corresponding algorithms.

Name Quantity Availability at Algorithm Complexity
Filtering p(zt‘|‘x1:t) t (online) Forward ?
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Name Quantity Availability at Algorithm Complexity
Smoothing p(zt‘|‘x1:T ) T (offline) Forwards-

backwards
O(K2T )
O(KT ) if
left-to-right

Fixed lag
smoothing

p(zt−`‘|‘x1:t), ` > 0 t+ ` (lagged) ? ?

State
prediction

p(zt+h‘|‘x1:t), h > 0 t ? ?

Observation
prediction

p(xt+h‘|‘x1:t), h > 0 t ? ?

MAP
Estimation

$ 1+2 $ T Viterbi
encoding

O(K2T )
O(KT ) if
sparse

Probability of
the evidence

p(x1:T ) T ? ?

2.3.1 Filtering

A filter infers the belief state at a given step based on all the information available up to that point p(zt|x1:t).
It achieves better noise reduction than simply estimating the hidden state based on the current estimate
p(zt|xt). The filtering process can be run online, or recursively, as new data streams in.

Filtered maginals can be computed recursively by means of the forward algorithm (Baum and Eagon 1967).
Let ψt(j) = p(xt|zt = j) be the local evidence at step t and Ψ(i, j) = p(zt = j|zt−1 = i) be the transition
probability. First, the one-step-ahead predictive density is computed

p(zt = j|x1:t−1) =
∑
i

Ψ(i, j)p(zt−1 = i|x1:t−1).

Acting as prior information, this quantity is updated with observed data at the step t using Bayes rule,

(1)

αt(j) , p(zt = j|x1:t)
= p(zt = j|xt,x1:t−1)
= Z−1

t ψt(j)p(zt = j|x1:t−1)

where the normalization constant is given by

Zt , p(xt|x1:t−1) =
K∑
l=1

p(xt|zt = l)p(zt = l|x1:t−1) =
K∑
l=1

ψt(l)p(zt = l|x1:t−1).

This predict-update cycle results in the filtered belief states at step t. As this algorithm only requires the
evaluation of the quantities ψt(j) for each value of zt for every t and fixed xt, the posterior distribution of
the latent states is independent of the form of the observation density or indeed of whether the observed
variables are continuous or discrete (Jordan 2003).

Let αt be a K-sized vector with the filtered belief states at step t, ψt(j) be the K-sized vector of local
evidence at step t, Ψ be the transition matrix and u� v is the Hadamard product, representing elementwise
vector multiplication. Then, the bayesian updating procedure can be expressed in matrix notitation as
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αt ∝ ψt � (ΨTαt−1).

In addition to computing the hidden states, the algorithm yields the log probability of the evidence

log p(x1:T |θ) =
T∑
t=1

log p(xt|x1:t−1) =
T∑
t=1

logZt.

Log domain should be preferred to avoid numerical underflow.

Algorithm 1: Forward Algorithm
input : Transition matrix Ψ, local evidence vector ψt and initial state distribution π.
output: Belief state vector α1:T and log probability of the evidence log p(x1:T =

∑
t logZt).

1 def normalize(u):
2 Z =

∑
j = uj

3 vj = uj/Z
4 return v, Z

5 α1, Z1 = normalize(ψ1 � π)
6 for t = 2 to T do
7 αt, Zt = normalize(ψt � (ΨTαt−1))
8 return α,

∑
t logZt

2.3.2 Smoothing

A smoother infers the belief state at a given state based on all the observations or evidence p(zt|x1:T ).
Although noise and uncertainty are significantly reduced as a result of conditioning on past and future data,
the smoothing process can only be run offline.

Inference can be done by means of the forwards-backwards algorithm, also know as the Baum-Welch algorithm
(Baum and Eagon 1967, Baum et al. (1970)). Let γt(j) be the desired smoothed posterior marginal,

γt(j) , p(zt = j|x1:T ),

αt(j) be the filtered belief state at the step t as defined by Equation (1) and βt(j) be the conditional likelihood
of future evidence given that the hidden state at step t is j,

βt(j) , p(xt+1:T |zt = j).

Then, the chain of smoothed marginals can be segregated into the past and the future components by
conditioning on the belief state zt,

γt(j) = p(zt = j|x1:T ) ∝ p(zt = j,xt+1:T |x1:t) ∝ p(zt = j|x1:t)p(xt+1:T |zt = j) ∝ αt(j)βt(j).

The future component can be computed recusively from right to left:
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βt−1(i) = p(xt:T |zt−1 = i)

=
K∑
j=1

p(zt = j,xt,xt+1:T |zt−1 = i)

=
K∑
j=1

p(xt+1:T |zt = j)p(zt = j,xt|zt−1 = i)

=
K∑
j=1

p(xt+1:T |zt = j)p(xt|zt = j)p(zt = j|zt−1 = i)

=
K∑
j=1

βt(j)ψt(j)Ψ(i, j)

Let βt be a K-sized vector with the conditional likelihood of future evidence given the hidden state at step t.
Then, the backwards procedure can be expressed in matrix notitation as

βt−1 ∝ Ψ(ψt � βt).

At the last step, the base case is given by

βT (i) = p(xT+1:T |zT = i) = p(∅|zT = i) = 1.

Intuitively, the forwards-backwards algorithm passes information from left to right and then from right to
left, combining them at each node. A straightforward implementation of the algorithm runs in O(K2T ) time
because of the K ×K matrix multiplication at each step. There is a significant reduction if the transition
matrix is sparse, for example a left-to-right transition matrix runs in O(TK) time. Additional assumptions
about the form of the transition matrix may ease the complexity further, for example reducing the time to
O(TK logK) if ψ(i, j) ∝ exp(−σ2|zi − zj |).

2.3.3 Fixed lag smoothing

A compromise between filtering and smoothing, the fixed lag smoothing infers the belief state at a given step
t based on the information available up to that point plus a fixed lag `, that is p(zt|x1:t+`). This approach
yields better performance than filtering at the price of a delay, whose size can be tuned to trade off accuracy
versus delay.

2.3.4 Backwards sampling

The smoothed posterior distribution of the hidden states is given by zs1:T ∼ p(z1:T |x1:T ). While smoothing
computes the sequence of the marginal distributions, additional information can be gathered by sampling
from the posterior.

A naive sampling approach starts with the execution of the forwards-backwards algorithm to compute the
two-slice smoothed marginal probabilities p(zt−1,t|x1:T ), continues with the computation of the conditionals
p(zt|zt−1,x1:T ) by normalizing, samples from the initial pair of states z∗1,2 ∼ p(z1,2|x1:T ) and finally recusively
samples the quantity of interest z∗t ∼ p(zt|z∗t−1,x1:T ). This solutions requires a forwards-backwards pass as
well as a forwards sampling pass.

Alternatively, it is possible to run a forward pass and perform sampling in the backwards pass. The joint
posterior distribution can be written from right to left,
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p(z1:T |x1:T ) = p(zT |x1:T )
1∏

t=T−1
p(zt|zt+1,x1:T ).

The state at a given step zt can be sampled given future states,

zst ∼ p(zt|zt+1:T ,x1:T ) = p(zt|zt+1,x1:t) = p(zt|zst+1,x1:t),

where the sampling distribution is given by

p(zt = i|zt+1 = j,x1:t) = p(zt|zt+1,x1:t) = . . .

At the last step, the base case is given by

zsT ∼ p(zT = i|x1:T ) = αT (i).

The forwards filtering, backwards sampling algorithm forms the basis of blocked-Gibbs sampling methods for
parameter inference.

2.3.5 Maximum a posteriori estimation

It is also of interest to compute the most probable state sequence or path,

z∗ = arg max
z1:T

p(z1:T |x1:T ).

The jointly most probable sequence of states can be inferred by means of maximum a posterior (MAP)
estimation. It is not necessarily the same as the sequence of marginally most probable states given by the
maximizer of the posterior marginals (MPM),

ẑ = (arg max
z1

p(z1|x1:T ), . . . , arg max
zT

p(zT |x1:T )),

which maximizes the expected number of correct individual states.

The MAP estimate is always globally consistent: while locally a state may be most probable at a given step,
the Viterbi or max-sum algorithm decodes the most likely single plausible path (Viterbi 1967). Furthermore,
the MPM sequence may have zero joint probability if it includes two successive states that, while being
individually the most probable, are connected in the transition matrix by a zero. On the other hand, MPM
can be considered more robust since the state at each step is estimated by averaging over its neighbours
rather than conditioning on a specific value of them.

The Viterbi algorithm is an adaptation of the forwards-backwards algorithm where the forward pass becomes
a max-product and the backwards pass relies on a traceback procedure to recover the most probable path. In
simple terms, once the most probable state zt is estimated, the procedure conditions the previous states on it.
Let δt(j) be the probability of arriving to the state j at step t given the most probable path was taken,

δt(j) , max
z1,...,zt−1

p(z1:t−1, zt = j|x1:t).

The most probable path to state j at step t consists of the most probable path to some other state i at point
t− 1, followed by a transition from i to j,
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δt(j) = max
i
δt−1(i)ψ(i, j)ψt(j).

Additionally, the most likely previous state on the most probable path to j at step t is given by

at(j) = arg max
i

δt−1(i)ψ(i, j)ψt(j).

By initializing with δ1 = πjφ1(j) and terminating with the most probable final state z∗T = arg maxi δT (i), the
most probable sequence of states is estimated using the traceback,

z∗t = at+1(z∗t+1).

It is advisable to work in the log domain to avoid numerical underflow,

δt(j) , max
z1:t−1

log p(z1:t−1, zt = j|x1:t) = max
i

log δt−1(i) + logψ(i, j) + logψt(j).

As with the backwards-forwards algorithm, the time complexity of Viterbi is O(K2T ) and the space complexity
is O(KT ). If the transition matrix has the form ψ(i, j) ∝ exp(−σ2||zi − zj ||2), implementation runs in
O(TK) time.

2.3.6 Prediction

Inference about the future belief states given the past observations requires computing p(zt+h|x1:t) for the
prediction horizon h > 0. The process is straightforward, the transition matrix is raised to the power of the
prediction horizon and applied to the current belief state.

p(zt+h|x1:t) = αtA
h.

Prediction about future observations involves the posterior predictive density,

p(xt+h|x1:t) =
∑
zt+h

p(xt+h|zt+h)p(zt+h|x1:t).

Since the influence of all available observations x1:t is summarised in the K-sized vector αt, prediction can
be carried forward indefinitely with only a fixed amount of storage.

2.4 Parameter estimation

The parameters of the models are θ = (π1,A,B), where π1 is the initial state distribution, A is the transition
matrix and B are the parameters of the state-conditional density function p(xt|zt = j). The form of B
depends on the specification of the observation model. Discrete observations may be characterized with
an L-sized multinoulli distribution with parameters Bjl = p(xt = l, zt = j) where l ∈ {1, . . . , L}, while
continuous emissions may be modelled with a Gaussian distribution with parameters µk and Σk where
k ∈ {1, . . . ,K}.

Estimation can be run under both the maximum likelihood and bayesian frameworks. The former may be
easily extended to regularized maximum likelihood with the introduction of the corresponding priors over the
parameters. Although it is a straightforward procedure when the data is fully observed, in practice the latent
states z1:T are hidden. In principle, this is just another optimization problem that can be solved via standard
numerical optimization methods. Analogous to fitting a mixture model, the most common approach is the
application of the Expectation-Maximization (EM) Algorithm (Dempster, Laird, and Rubin 1977) to find
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either the maximum likelihood or the maximum a posteriori estimates. In the context of HMM, this is also
known as the Baum-Welch algorithm (Baum et al. 1970).

The algorithm considers the unobserved internal state trajectory as missing data and decouples the learning
problem into two parts: (1) a temporal assignment subproblem, and (2) a statistical learning subproblem
that consists of fitting parameters to the next-state and the output mapping, both defined by the estimated
trajectory. We refer to the original source (Dempster, Laird, and Rubin 1977) for a detailed study of the EM
algorithm, as well as current papers (Rabiner 1990) or standard textbook (Bishop 2006, Murphy (2012)) for
the its application to HHM.

Additionally, estimation can be done in a fully bayesian fashion. In terms of variational Bayes EM, MacKay
(1997) proposes a method based on the optimization of an ensemble that approximates the entire posterior
probability distribution. In turns, Beal (2003) presents a unified variational Bayesian framework which
approximates the computations using a lower bound on the marginal likelihood. As for Markov Chain Monte
Carlo methods, block Gibbs sampling can be applied as shown in Frühwirth-Schnatter (2006). Briefly, samples
are drawn from the density p(z1:T |x1:T ,θ) by means of forwards-filtering, backwards-sampling, and then the
parameters are sampled from their posteriors conditional on the sampled latent paths.

2.4.1 Implementation in Stan

While we’re implementing the code during the following months, we’ll probably have to work out
a few implementation details like marginalization, vectorization, initialization, priors, speed-up
tricks, convergence tricks, limitations by stan data structures (maybe), among other. These
adaptations for the inference and/or estimation steps should be noted and explained in here. This
would be a great contribution, Stan docs has plenty of tips and tricks but they’re mostly scattered
along the many models described in the manual.

2.4.2 Variations

There are numerous variants of the HMM. Some of them impose constraints on the form of the transition
matrix. In the left-to-right or Barkis model, where Aij = 0 ∀ j < i, the underlying state sequence stays the
same or increases as time increases.

3 Input-Output Hidden Markov Models

The Input-Output Hidden Markov Model (IOHMM) is an architecture proposed by Bengio and Frasconi
(1995) to map input sequences, sometimes called the control signal, to output sequences. Similarly to HMM,
the model is meant to be especially effective to learn long term memory, that is when input-output sequences
span long points. On the other hand, it differs from HMM, which is part of the unsupervised learning
paradigm, since it is capable of learning the output sequence itself instead of just the output sequence
distribution. IOHMM is a probabilistic framework that can deal with general sequence processing tasks such
as production, classification, or prediction.

3.1 Model specification

As with HMM, IOHMM involves two interconnected models,

zt = f(zt−1,ut)
xt = g(zt,ut).
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The first line corresponds to the state model, which consists of discrete-time, discrete-state hidden states
zt ∈ {1, . . . ,K} whose transition depends on the previous hidden state zt−1 and the input vector ut ∈ RM .
Additionally, the observation model is governed by g(zt,ut), where xt ∈ RR is the vector of observations,
emissions or output. The corresponding joint distribution,

p(z1:T ,x1:T |ut),

can take many forms. In a simple parametrization for continuous inputs and outputs, the state model involves
a multinomial regression whose parameters depend on the previous state i,

p(zt|xt,ut, zt−1 = i) = softmax−1(wiut),

and the observation model is built upon the Gaussian density with parameters depending on the current
state j,

p(xt|ut, zt = j) = N (xt|bjut,Σj).

IOHMM adapts the logics of HMM to allow for input and output vectors, retaining its fully probabilistic
quality. Hidden states are assumed to follow a multinomial distribution that depends on the input sequence.
The transition probabilities Ψt(i, j) = p(zt = j|zt−1 = i,ut), which govern the state dynamics, are driven by
the control signal as well.

As for the output sequence, the local evidence at time t now becomes ψt(j) = p(xt|zt = j,ηt), where
ηt = E 〈xt|zt,ut〉 can be interpreted as the expected location parameter for the probability distribution of
the emission xt conditional on the input vector ut and the hidden state zt. The actual form of the emission
density p(xt,ηt) can be discrete or continuous. In case of sequence classification or symbolic mutually
exclusive emissions, it is possible to set up the multinomial distribution by running the softmax function over
the estimated outputs of all possible states. Alternatively, when approximating continuous observations with
the Gaussian density, the target is estimated as a linear combination of these outputs.

3.2 Inference

3.2.1 Filtering

Filtered maginals can be computed recursively by adjusting the forward algorithm to consider the input
sequence,

αt(j) , p(zt = j|x1:t,u1:t)

=
K∑
i=1

p(zt = j|zt−1 = i,xt,ut)p(zt−1 = i|x1:t−1,u1:t−1)

=
K∑
i=1

p(xt|zt = j,ut)p(zt = j|zt−1 = i,ut)p(zt−1 = i|x1:t−1,u1:t−1)

= ψt(j)
K∑
i=1

Ψt(i, j)αt−1(i).
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3.2.2 Smoothing

Similarly, inference about the smoothed posterior marginal can be computed adjusting the forwards-backwards
algorithm to consider the input sequence in both components αt(j) and βt(j). The future component now
becomes

βt−1(i) , p(xt:T |zt−1 = i,ut:T )

=
K∑
j=1

ψt(j)Ψt(i, j)βt(j).

3.3 Parameter estimation

The parameters of the models are θ = (π1,θh,θo), where π1 is the initial state distribution, θh are
the parameters of the hidden model and θo are the parameters of the state-conditional density function
p(xt|zt = j,ut). The form of θh and θo depend on the specification of the model. State transition may
be characterized by a logistic or multinomial regression with parameters wk for k ∈ {1, . . . ,K}, while
emissions may be modelled with with a linear regression with Gaussian error with parameters bk and Σk for
k ∈ {1, . . . ,K}.

Estimation can be run under both the maximum likelihood and bayesian frameworks. Although it is a
straightforward procedure when the data is fully observed, in practice the latent states z1:T are hidden. The
most common approach is the application of the EM algorithm to find either the maximum likelihood or the
maximum a posteriori estimates. Bengio and Frasconi (1995) shows a straighforward modification of the EM
algorithm. The application of sigmoidal functions, for example the logistic or softmax transforms for the
hidden transition model, requires numeric optimization via gradient ascent or similar methods for the M step.

4 Hierarchical Hidden Markov Models

The Hierarchical Hidden Markov Model (HHMM) is a recursive hierarchical generalization of the HMM that
provides a systematic unsupervised approach for complex multi-scale structure. The model is motivated
by the multiplicity of length scales and the different stochastic levels (recursive nature) present in some
sequences. Additionally, it infers correlated observations over long periods via higher levels of hierarchy.

The model structure is fairly general and allows an arbitrary number of activations of its submodels. The
multi-resolution structure is handled by temporal experts1 of different time scales.

4.1 Model specification

HHMM are structured multi-level stochastic processes that generalize HHM by making each of the hidden
states an autonomous probabilistic model. There are two kinds of states: internal states are HHMM that
emit sequences by a recursive activation of one of the substates, while production states generate an output
symbol according to the probability distribution of the set of output symbols.

Hidden dynamics are lead by transitions. Vertical transitions involve the activation of a substate by an
internal state, they may include further vertical transitions to lower level states. Once completed, they
return the control to the state that originated the recursive activation chain. Then, a horizontal transition is
performed. It is state tranistion within the same level.

1In Machine Learning terminology, a problem is divided into homogeneous regions addressed by an expert submodel. A
gating network or function decides which expert to use for each input region.
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A HHMM can be represented as a standard single level HMM whose states are the production states of the
corresponding HHMM with a fully connected structure, i.e. there is a non-zero probability of tranisition from
any state to any other state. This equivalent new model lacks the multi-level structure.

Let zdt = i be the state of an HHMM at the step t, where i ∈ {1, . . . , |zd|} is the state index, |zd| is the
number of possible steps within the d-th level and d ∈ {1, . . . , D} is the hierarchy index taking values d = 1
for the root state, d = {2, . . . , ..., D − 1} for the remaining internal states and d = D for the production
states.

In addition to its structure, the model is characterized by the state transition probability between the internal
states and the output distribution of the production states. For each internal state zdt for d ∈ {1, . . . , D − 1},
there is a state transition probability matrix Ad with elements Adij = p(zd+1

t = j|zd+1
t = j) is the probability

of a horizontal transition from the i-th state to the j-th state within the level d. Similarly, there is the initial
distribution vector over the substates πd with elements πdj = p(zd+1

t = j|zdt ) for d ∈ {1, . . . , D − 1}. Finally,
each production state zDt is parametrized by the output parameter vector θio whose form depends on the
specification of the observation model p(xt|zDt = j,θjo) corresponding to the j-th production state.

4.2 Generative model

The root node initiates a stochastic sequence generation. An observation for the first step in the sequence t
is generated by drawing at random one of the possible substates according to the initial state distribution
π1. To replicate the recursive activation process, for each internal state entered zdt one of the substates
is randomly chosen according to the corresponding initial probability vector πd. When an internal state
transitions to a production state zDt = j, a single observation is generated according to the state output
parameter vector θjo. Control returns to the internal state that lead to the current production state zD−1

t ,
which in turns selects the next state in the same level according to transition matrix AD−1.

Save for the top, each level d ∈ {2, . . . , D} has a final state that terminates the stochastic state activation
process and returns the control to the parent state of the whole hierarchy. The generation of the observation
sequence is completed when control of all the recursive activations returns to the root state.

4.3 Parameter estimation

The parameters of the models are θ =
{{
Ad
}
d∈{1,...,D−1} ,

{
πd
}
d∈{1,...,D−1} , {θo}

}
. The form of θo depends

on the specification of the production states.
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