1 Markov chains

1.1 Definitions

Let \(z_1:T = \{z_1, \ldots, z_T\} \) be a sequence of regularly spaced observations of arbitrary length \(T \). The index \(t = 1, \ldots, T \) reflects discrete time or space steps. The sequence of random variables has the Markovian property if the probability of moving to the next state depends only on the present state and not on the previous ones.

1.2 Transition function (joint distribution)

Let \(p(z_t | z_{t-m:t-1}) \) be the transition function, where \(m \) is finite. Assuming the conditional probabilities are well defined, the joint distribution of a Markov chain of order \(m \), or a Markov chain with memory \(m \), given the parameters \(\theta \) can be derived with the chain rule of probability

\[
p(z_1:T) = p(z_1:m) \prod_{t=m+1}^T p(z_t | z_{t-m:t-1}),
\]

where conditioning on the fixed parameters \(\theta \) was removed to increase readability.

For first-order Markov chains, by the chain rule of probability, the expression simplifies to

\[
p(z_1:T) = p(z_1)p(z_2|z_1)p(z_3|z_2)\ldots p(z_T|z_{T-1}) = p(z_1) \prod_{t=2}^T p(z_t|z_{t-1}).
\]

When the transition function is independent of the step index, the chain is called homogeneous, stationary, or time-invariant and the parameters are shared by multiple variables.

If the observed variable only takes one of \(K \) possible values, so that \(z_t \in S = \{1, \ldots, K\} \), the model is called a discrete-state or finite-state Markov chain. The possible values of \(z_t \) form a countable set \(S \) called the state space of the chain.

1.3 Transition matrix for a finite-state Markov chain (conditional distribution)

In the context of a finite-state Markov chain, the one-step transition matrix \(A \) is a \(K \times K \) stochastic matrix with elements \(A_{ij} = p(z_t = j | z_{t-1} = i) \) with \(i, j \in S \) that satisfies \(\sum_j A_{ij} = 1 \) for all rows \(i \) and \(0 \leq A_{ij} \leq 1 \) for all entries \(i, j \). Each element specifies the probability of transition from \(i \) to \(j \) in one step. Given the constraints, the matrix has \(K(K - 1) \) independent parameters.

The \(n \)-step transition matrix \(A(n) \) has elements \(A_{ij}(n) = p(z_{t+n} = j | z_t = i) \) representing the probability of getting from \(i \) to \(j \) in exactly \(n \) steps. By definition, \(A(1) = A \). By the Chapman-Kolmogorov equations,

\[
A_{ij}(n + s) = \sum_{l=1}^K A_{il}(n)A_{lj}(s),
\]
the probability of transitioning from i to j in exactly $n + s$ steps is the probability of getting from i to l in n steps and then from l to j in s steps, summed up over all l. Since this is equivalent to matrix multiplication,

$$A(n + s) = A(n)A(s),$$

multiple steps can be naturally computed by exponentiation

$$A(n) = A(1)A(n - 1) = A(1)A(1)A(n - 2) = \cdots = A^n.$$

1.4 State probabilities (marginal distribution)

Let $\pi_t(j) = p(z_t = j)$ be the probability that the random variable is in state j at the step t and π be a row vector called the state probability vector. Given the initial state distribution π_0, the state probabilities for the next step can be computed by $\pi_1 = \pi_0A$.

A chain is said to have reached its stationary, invariant or equilibrium distribution when the following condition becomes true after many iterations

$$\pi = \pi A.$$

This distribution does not always exist, but if does, the process cannot leave after entering this stage. There are different ways to prove if a chain is stationary, the most popular set of necessary conditions include irreducibility, recurrence and a limiting distribution that does not depend on the initial values, which in turns requires aperiodicity. The equilibrium is characterized by the the global balance equations. We refer to Doob (1953) for a detailed study on the existence of a stationarity distribution and its computation.

2 Hidden Markov Models

Real-world processes produce observable outputs characterized as signals. These can be discrete or continuous in nature, be pure or contaminated with noise, come from a stationary or non stationary source, among many other variations. These signals are modelled to allow for both theoretical descriptions and practical applications. The model itself can be deterministic or stochastic, in which case the signal is well characterized as a parametric random process whose parameters can be estimated in a well-defined manner.

Autocorrelation, a key feature in most signals, can be modelled in countless forms. While certainly pertinent to this purpose, high order Markov chains can prove inconvenient when the range of the correlation amongst the observations is long. A more parsimonious approach assumes that the observed sequence is a noisy observation of an underlying hidden process represented as a first-order Markov chain. In other terms, long-range dependencies between observations are mediated via latent variables. It is important to note that the Markov property is only assumed for the hidden states and not for the observations themselves.

2.1 Model specification

HMM involves two interconnected models. The state model consists of a discrete-time, discrete-state, first order hidden Markov chain $z_t \in \{1, \ldots, K\}$ that transitions according to $p(z_t|z_{t-1})$. Additionally, the observation model is governed by $p(x_t|z_t)$, where x_t are the observations, emissions or output. The corresponding joint distribution is

$$p(z_{1:T}, x_{1:T}) = p(z_{1:T})p(x_{1:T}|z_{1:T}) = \left[p(z_1) \prod_{t=2}^{T} p(z_t|z_{t-1}) \right] \left[\prod_{t=1}^{T} p(x_t|z_t) \right].$$
It is a specific instance of the state space model family in which the latent variables are discrete. Each single time slice corresponds to a mixture distribution with component densities given by \(p(x_t|z_t) \), thus HMM may be interpreted as an extension of a mixture model in which the choice of component for each observation is not selected independently but depends on the choice of component for the previous observation. In the case of a simple mixture model for an independent and identically distributed sample, the parameters of the transition matrix inside the \(i \)-th column are the same, so that the conditional distribution \(p(z_t|z_{t-1}) \) is independent of \(z_{t-1} \).

When the output is discrete, the observation model commonly takes the form of an observation matrix

\[
p(x = l|z_t = k, \theta) = B(k, l).
\]

Alternatively, if the output is continuous, the observation model is frequently a conditional Gaussian

\[
p(x_t|z_t = k, \theta) = \mathcal{N}(x_t|\mu_k, \Sigma_k).
\]

The latter is equivalent to a Gaussian mixture model with cluster membership ruled by Markovian dynamics, also known as Markov Switching Models (MSM). In this context, multiple sequential observations tend to share the same location until they suddenly jump into a new cluster.

2.2 Characteristics

By specification of the latent model, the density function of the duration \(\tau \) in state \(i \) is given by

\[
p_i(\tau) = (A_{ii})^\tau(1 - A_{ii}) \propto \exp(-\tau \ln A_{ii}),
\]

which represents the probability that a sequence spends precisely \(\tau \) steps in state \(i \). The expected duration conditional on starting in that state is

\[
\bar{\tau}_i = \sum_{\tau=1}^{\infty} \tau p_i(\tau) = \frac{1}{1 - A_{ii}}.
\]

The density is an exponentially decaying function of \(\tau \), thus longer durations are more probable than shorter ones. In applications where this proves unrealistic, the diagonal coefficients of the transition matrix \(A_{ii} \), \(\forall i \) may be set to zero and each state \(i \) is explicitly associated with a probability distribution of possible duration times \(p(\tau|i) \) (Rabiner 1990).

One of the most powerful properties of HMM is the ability to exhibit some degree of invariance to local warping of the time axis. Allowing for compression or stretching of the time, the model accommodates for variations in speed.

2.3 Inference

There are several quantities of interest to be inferred from different algorithms. These are summarized in the following table. In this section, the discussion assumes that model parameters \(\theta \) are known.

<p>| Name | Quantity (p(z_t'|x_{1:t})) | Availability at (t) (online) | Algorithm | Complexity |
|-------|-------------------------------|----------------------------------|-----------|------------|
| Filtering | (p(z_t'|x_{1:t})) | Forward | ? |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Quantity</th>
<th>Availability at</th>
<th>Algorithm</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoothing</td>
<td>$p(z_t \mid x_{1:t})$</td>
<td>T (offline)</td>
<td>Forwards-backwards</td>
<td>$O(K^2T)$ if left-to-right</td>
</tr>
<tr>
<td>Fixed lag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>smoothing</td>
<td>$p(z_{t-\ell} \mid x_{1:t})$, $\ell > 0$</td>
<td>$t + \ell$ (lagged)</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>State prediction</td>
<td>$p(z_{t+h} \mid x_{1:t})$, $h > 0$</td>
<td>t</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Observation prediction</td>
<td>$p(x_{t+h} \mid x_{1:t})$, $h > 0$</td>
<td>t</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>MAP Estimation</td>
<td></td>
<td>T</td>
<td>Viterbi encoding</td>
<td>$O(K^2T)$ if sparse</td>
</tr>
<tr>
<td>Probability of</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the evidence</td>
<td>$p(x_{1:T})$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3.1 Filtering

A filter infers the belief state at a given step based on all the information available up to that point $p(z_t \mid x_{1:t})$. It achieves better noise reduction than simply estimating the hidden state based on the current estimate $p(z_t \mid x_t)$. The filtering process can be run online, or recursively, as new data streams in.

Filtered marginals can be computed recursively by means of the forward algorithm (Baum and Eagon 1967). Let $\psi_t(j) = p(x_t \mid z_t = j)$ be the local evidence at step t and $\Psi(i,j) = p(z_t = j \mid z_{t-1} = i)$ be the transition probability. First, the one-step-ahead predictive density is computed

$$p(z_t = j \mid x_{1:t-1}) = \sum_i \Psi(i,j)p(z_{t-1} = i \mid x_{1:t-1}).$$

Acting as prior information, this quantity is updated with observed data at the step t using Bayes rule,

$$\alpha_t(j) \triangleq p(z_t = j \mid x_{1:t}) = p(z_t = j \mid x_t, x_{1:t-1}) = Z_t^{-1}\psi_t(j)p(z_t = j \mid x_{1:t-1})$$

where the normalization constant is given by

$$Z_t \triangleq p(x_t \mid x_{1:t-1}) = \sum_{l=1}^{K} p(x_t \mid z_t = l)p(z_t = l \mid x_{1:t-1}) = \sum_{l=1}^{K} \psi_t(l)p(z_t = l \mid x_{1:t-1}).$$

This predict-update cycle results in the filtered belief states at step t. As this algorithm only requires the evaluation of the quantities $\psi_t(j)$ for each value of z_t for every t and fixed x_t, the posterior distribution of the latent states is independent of the form of the observation density or indeed of whether the observed variables are continuous or discrete (Jordan 2003).

Let α_t be a K-sized vector with the filtered belief states at step t, $\psi_t(j)$ be the K-sized vector of local evidence at step t, Ψ be the transition matrix and $\mathbf{u} \circ \mathbf{v}$ is the Hadamard product, representing elementwise vector multiplication. Then, the bayesian updating procedure can be expressed in matrix notation as
\[\alpha_t \propto \psi_t \odot (\Psi^T \alpha_{t-1}) \]

In addition to computing the hidden states, the algorithm yields the log probability of the evidence

\[
\log p(x_{1:T} | \theta) = \sum_{t=1}^T \log p(x_t | x_{1:t-1}) = \sum_{t=1}^T \log Z_t.
\]

Log domain should be preferred to avoid numerical underflow.

Algorithm 1: Forward Algorithm

input: Transition matrix \(\Psi \), local evidence vector \(\psi_t \) and initial state distribution \(\pi \).

output: Belief state vector \(\alpha_{1:T} \) and log probability of the evidence \(\log p(x_{1:T} = \sum_t \log Z_t) \).

1. def normalize(u):
2. \[Z = \sum_j u_j \]
3. \[v_j = u_j / Z \]
4. return \(v, Z \)
5. \(\alpha_1, Z_1 = \text{normalize}(\psi_1 \odot \pi) \)
6. for \(t = 2 \) to \(T \) do
7. \(\alpha_t, Z_t = \text{normalize}(\psi_t \odot (\Psi^T \alpha_{t-1})) \)
8. return \(\alpha, \sum_t \log Z_t \)

2.3.2 Smoothing

A smoother infers the belief state at a given state based on all the observations or evidence \(p(z_t | x_{1:T}) \). Although noise and uncertainty are significantly reduced as a result of conditioning on past and future data, the smoothing process can only be run offline.

Inference can be done by means of the forwards-backwards algorithm, also know as the Baum-Welch algorithm (Baum and Eagon 1967, Baum et al. (1970)). Let \(\gamma_t(j) \) be the desired smoothed posterior marginal,

\[\gamma_t(j) \triangleq p(z_t = j | x_{1:T}) \]

\(\alpha_t(j) \) be the filtered belief state at the step \(t \) as defined by Equation (1) and \(\beta_t(j) \) be the conditional likelihood of future evidence given that the hidden state at step \(t \) is \(j \),

\[\beta_t(j) \triangleq p(x_{t+1:T} | z_t = j) \]

Then, the chain of smoothed marginals can be segregated into the past and the future components by conditioning on the belief state \(z_t \),

\[\gamma_t(j) = p(z_t = j | x_{1:T}) \propto p(z_t = j, x_{t+1:T} | x_{1:t}) \propto p(z_t = j | x_{1:t})p(x_{t+1:T} | z_t = j) \propto \alpha_t(j)\beta_t(j). \]

The future component can be computed recursively from right to left:
\[
\beta_{t-1}(i) = p(x_{t:T} | z_{t-1} = i) \\
= \sum_{j=1}^{K} p(z_t = j, x_t, x_{t+1:T} | z_{t-1} = i) \\
= \sum_{j=1}^{K} p(x_{t+1:T} | z_t = j)p(z_t = j, x_t | z_{t-1} = i) \\
= \sum_{j=1}^{K} p(x_{t+1:T} | z_t = j) p(x_t | z_t = j) p(z_t = j | z_{t-1} = i) \\
= \sum_{j=1}^{K} \beta_t(j) \psi_t(j) \Psi(i, j)
\]

Let \(\beta_t \) be a \(K \)-sized vector with the conditional likelihood of future evidence given the hidden state at step \(t \). Then, the backwards procedure can be expressed in matrix notation as

\[
\beta_{t-1} \propto \Psi(\psi_t \odot \beta_t).
\]

At the last step, the base case is given by

\[
\beta_T(i) = p(x_{T+1:T} | z_T = i) = p(\emptyset | z_T = i) = 1.
\]

Intuitively, the forwards-backwards algorithm passes information from left to right and then from right to left, combining them at each node. A straightforward implementation of the algorithm runs in \(O(K^2T) \) time because of the \(K \times K \) matrix multiplication at each step. There is a significant reduction if the transition matrix is sparse, for example a left-to-right transition matrix runs in \(O(TK) \) time. Additional assumptions about the form of the transition matrix may ease the complexity further, for example reducing the time to \(O(TK \log K) \) if \(\psi(i, j) \propto \exp(-\sigma^2 |z_i - z_j|) \).

2.3.3 Fixed lag smoothing

A compromise between filtering and smoothing, the fixed lag smoothing infers the belief state at a given step \(t \) based on the information available up to that point plus a fixed lag \(\ell \), that is \(p(z_t | x_{1:T+\ell}) \). This approach yields better performance than filtering at the price of a delay, whose size can be tuned to trade off accuracy versus delay.

2.3.4 Backwards sampling

The smoothed posterior distribution of the hidden states is given by \(z_{1:T}^* \sim p(z_{1:T} | x_{1:T}) \). While smoothing computes the sequence of the marginal distributions, additional information can be gathered by sampling from the posterior.

A naive sampling approach starts with the execution of the forwards-backwards algorithm to compute the two-slice smoothed marginal probabilities \(p(z_{t-1:T}^* | x_{1:T}) \), continues with the computation of the conditionals \(p(z_t | z_{t-1:T}^*, x_{1:T}) \) by normalizing, samples from the initial pair of states \(z_{1,2}^* \sim p(z_{1,2}|x_{1:T}) \) and finally recursively samples the quantity of interest \(z_t^* \sim p(z_t | z_{t-1}^*, x_{1:T}) \). This solutions requires a forwards-backwards pass as well as a forwards sampling pass.

Alternatively, it is possible to run a forward pass and perform sampling in the backwards pass. The joint posterior distribution can be written from right to left,
\[
p(z_{1:T} | x_{1:T}) = p(z_T | x_{1:T}) \prod_{t=1}^{T-1} p(z_t | z_{t+1}, x_{1:T}).
\]

The state at a given step \(z_t\) can be sampled given future states,

\[
z_t^* \sim p(z_t | z_{t+1:T}, x_{1:T}) = p(z_t | z_{t+1}, x_{1:t}) = p(z_t | z_{t+1}^*, x_{1:t}),
\]

where the sampling distribution is given by

\[
p(z_t = i | z_{t+1} = j, x_{1:t}) = p(z_t | z_{t+1}, x_{1:t}) = \ldots
\]

At the last step, the base case is given by

\[
z_T^* \sim p(z_T = i | x_{1:T}) = \alpha_T(i).
\]

The forwards filtering, backwards sampling algorithm forms the basis of blocked-Gibbs sampling methods for parameter inference.

2.3.5 Maximum a posteriori estimation

It is also of interest to compute the most probable state sequence or path,

\[
z^* = \arg \max_{z_{1:T}} p(z_{1:T} | x_{1:T}).
\]

The jointly most probable sequence of states can be inferred by means of maximum a posterior (MAP) estimation. It is not necessarily the same as the sequence of marginally most probable states given by the maximizer of the posterior marginals (MPM),

\[
\hat{z} = (\arg \max_{z_1} p(z_1 | x_{1:T}), \ldots, \arg \max_{z_T} p(z_T | x_{1:T})),
\]

which maximizes the expected number of correct individual states.

The MAP estimate is always globally consistent: while locally a state may be most probable at a given step, the Viterbi or max-sum algorithm decodes the most likely single plausible path (Viterbi 1967). Furthermore, the MPM sequence may have zero joint probability if it includes two successive states that, while being individually the most probable, are connected in the transition matrix by a zero. On the other hand, MPM can be considered more robust since the state at each step is estimated by averaging over its neighbours rather than conditioning on a specific value of them.

The Viterbi algorithm is an adaptation of the forwards-backwards algorithm where the forward pass becomes a max-product and the backwards pass relies on a traceback procedure to recover the most probable path. In simple terms, once the most probable state \(z_t\) is estimated, the procedure conditions the previous states on it. Let \(\delta_t(j)\) be the probability of arriving to the state \(j\) at step \(t\) given the most probable path was taken,

\[
\delta_t(j) = \max_{z_{1:t-1}} p(z_{1:t-1}, z_t = j | x_{1:t}).
\]

The most probable path to state \(j\) at step \(t\) consists of the most probable path to some other state \(i\) at point \(t - 1\), followed by a transition from \(i\) to \(j\),
\[
\delta_t(j) = \max_i \delta_{t-1}(i) \psi(i, j) \psi_t(j).
\]

Additionally, the most likely previous state on the most probable path to \(j \) at step \(t \) is given by

\[
a_t(j) = \arg \max_i \delta_{t-1}(i) \psi(i, j) \psi_t(j).
\]

By initializing with \(\delta_1 = \pi \phi_1(j) \) and terminating with the most probable final state \(z^*_T = \max_i \delta_T(i) \), the most probable sequence of states is estimated using the traceback,

\[
z^*_t = a_{t+1}(z^*_{t+1}).
\]

It is advisable to work in the log domain to avoid numerical underflow,

\[
\delta_t(j) \triangleq \max_{z_{t-1}} \log p(z_{1:t-1}, z_t = j | x_{1:t}) = \max_i \log \delta_{t-1}(i) + \log \psi(i, j) + \log \psi_t(j).
\]

As with the backwards-forwards algorithm, the time complexity of Viterbi is \(O(K^2T) \) and the space complexity is \(O(KT) \). If the transition matrix has the form \(\psi(i, j) \propto \exp(-\sigma^2||z_i - z_j||^2) \), implementation runs in \(O(TK) \) time.

2.3.6 Prediction

Inference about the future belief states given the past observations requires computing \(p(z_{t+h} | x_{1:t}) \) for the prediction horizon \(h > 0 \). The process is straightforward, the transition matrix is raised to the power of the prediction horizon and applied to the current belief state.

\[
p(z_{t+h} | x_{1:t}) = \alpha_t A^h.
\]

Prediction about future observations involves the posterior predictive density,

\[
p(x_{t+h} | x_{1:t}) = \sum_{z_{t+h}} p(x_{t+h} | z_{t+h}) p(z_{t+h} | x_{1:t}).
\]

Since the influence of all available observations \(x_{1:t} \) is summarised in the \(K \)-sized vector \(\alpha_t \), prediction can be carried forward indefinitely with only a fixed amount of storage.

2.4 Parameter estimation

The parameters of the models are \(\theta = (\pi_1, A, B) \), where \(\pi_1 \) is the initial state distribution, \(A \) is the transition matrix and \(B \) are the parameters of the state-conditional density function \(p(x_t | z_t = j) \). The form of \(B \) depends on the specification of the observation model. Discrete observations may be characterized with an \(L \)-sized multinoulli distribution with parameters \(B_{jl} = p(x_l = l, z_t = j) \) where \(l \in \{1, \ldots, L\} \), while continuous emissions may be modelled with a Gaussian distribution with parameters \(\mu_k \) and \(\Sigma_k \) where \(k \in \{1, \ldots, K\} \).

Estimation can be run under both the maximum likelihood and bayesian frameworks. The former may be easily extended to regularized maximum likelihood with the introduction of the corresponding priors over the parameters. Although it is a straightforward procedure when the data is fully observed, in practice the latent states \(z_{1:T} \) are hidden. In principle, this is just another optimization problem that can be solved via standard numerical optimization methods. Analogous to fitting a mixture model, the most common approach is the application of the Expectation-Maximization (EM) Algorithm (Dempster, Laird, and Rubin 1977) to find
either the maximum likelihood or the maximum a posteriori estimates. In the context of HMM, this is also known as the Baum-Welch algorithm (Baum et al. 1970).

The algorithm considers the unobserved internal state trajectory as missing data and decouples the learning problem into two parts: (1) a temporal assignment subproblem, and (2) a statistical learning subproblem that consists of fitting parameters to the next-state and the output mapping, both defined by the estimated trajectory. We refer to the original source (Dempster, Laird, and Rubin 1977) for a detailed study of the EM algorithm, as well as current papers (Rabiner 1990) or standard textbook (Bishop 2006, Murphy (2012)) for the its application to HHM.

Additionally, estimation can be done in a fully bayesian fashion. In terms of variational Bayes EM, MacKay (1997) proposes a method based on the optimization of an ensemble that approximates the entire posterior probability distribution. In turns, Beal (2003) presents a unified variational Bayesian framework which approximates the computations using a lower bound on the marginal likelihood. As for Markov Chain Monte Carlo methods, block Gibbs sampling can be applied as shown in Frühwirth-Schnatter (2006). Briefly, samples are drawn from the density $p(z_{1:T}|x_{1:T}, \theta)$ by means of forwards-filtering, backwards-sampling, and then the parameters are sampled from their posteriors conditional on the sampled latent paths.

2.4.1 Implementation in Stan

While we’re implementing the code during the following months, we’ll probably have to work out a few implementation details like marginalization, vectorization, initialization, priors, speed-up tricks, convergence tricks, limitations by stan data structures (maybe), among other. These adaptations for the inference and/or estimation steps should be noted and explained in here. This would be a great contribution, Stan docs has plenty of tips and tricks but they’re mostly scattered along the many models described in the manual.

2.4.2 Variations

There are numerous variants of the HMM. Some of them impose constraints on the form of the transition matrix. In the left-to-right or Barkis model, where $A_{ij} = 0 \forall j < i$, the underlying state sequence stays the same or increases as time increases.

3 Input-Output Hidden Markov Models

The Input-Output Hidden Markov Model (IOHMM) is an architecture proposed by Bengio and Frasconi (1995) to map input sequences, sometimes called the control signal, to output sequences. Similarly to HMM, the model is meant to be especially effective to learn long term memory, that is when input-output sequences span long points. On the other hand, it differs from HMM, which is part of the unsupervised learning paradigm, since it is capable of learning the output sequence itself instead of just the output sequence distribution. IOHMM is a probabilistic framework that can deal with general sequence processing tasks such as production, classification, or prediction.

3.1 Model specification

As with HMM, IOHMM involves two interconnected models,

\[
\begin{align*}
z_t &= f(z_{t-1}, u_t) \\
x_t &= g(z_t, u_t).
\end{align*}
\]
The first line corresponds to the state model, which consists of discrete-time, discrete-state hidden states \(z_t \in \{1, \ldots, K \} \) whose transition depends on the previous hidden state \(z_{t-1} \) and the input vector \(u_t \in \mathbb{R}^M \). Additionally, the observation model is governed by \(g(z_t, u_t) \), where \(x_t \in \mathbb{R}^R \) is the vector of observations, emissions or output. The corresponding joint distribution,

\[
p(z_{1:T}, x_{1:T}|u_t),
\]
can take many forms. In a simple parametrization for continuous inputs and outputs, the state model involves a multinomial regression whose parameters depend on the previous state \(i \),

\[
p(z_t|x_t, u_t, z_{t-1}=i) = \text{softmax}^{-1}(w_i u_t),
\]
and the observation model is built upon the Gaussian density with parameters depending on the current state \(j \),

\[
p(x_t|u_t, z_t=j) = \mathcal{N}(x_t|b_j u_t, \Sigma_j).
\]

IOHMM adapts the logics of HMM to allow for input and output vectors, retaining its fully probabilistic quality. Hidden states are assumed to follow a multinomial distribution that depends on the input sequence. The transition probabilities \(\Psi_t(i, j) = p(z_t = j|z_{t-1} = i, u_t) \), which govern the state dynamics, are driven by the control signal as well.

As for the output sequence, the local evidence at time \(t \) now becomes \(\psi_t(j) = p(x_t|z_t = j, \eta_t) \), where \(\eta_t = \mathbb{E}(x_t|z_t, u_t) \) can be interpreted as the expected location parameter for the probability distribution of the emission \(x_t \) conditional on the input vector \(u_t \) and the hidden state \(z_t \). The actual form of the emission density \(p(x_t, \eta_t) \) can be discrete or continuous. In case of sequence classification or symbolic mutually exclusive emissions, it is possible to set up the multinomial distribution by running the softmax function over the estimated outputs of all possible states. Alternatively, when approximating continuous observations with the Gaussian density, the target is estimated as a linear combination of these outputs.

3.2 Inference

3.2.1 Filtering

Filtered marginals can be computed recursively by adjusting the forward algorithm to consider the input sequence,

\[
\alpha_t(j) \triangleq p(z_t = j|x_{1:t}, u_{1:t}) = \sum_{i=1}^{K} p(z_t = j|z_{t-1} = i, x_t, u_t) p(z_{t-1} = i|x_{1:t-1}, u_{1:t-1})
\]

\[
= \sum_{i=1}^{K} p(x_t|z_t = j, u_t) p(z_t = j|z_{t-1} = i, u_t) p(z_{t-1} = i|x_{1:t-1}, u_{1:t-1})
\]

\[
= \psi_t(j) \sum_{i=1}^{K} \Psi_t(i, j) \alpha_{t-1}(i).
\]
3.2.2 Smoothing

Similarly, inference about the smoothed posterior marginal can be computed adjusting the forwards-backwards algorithm to consider the input sequence in both components $\alpha_t(j)$ and $\beta_t(j)$. The future component now becomes

$$
\beta_{t-1}(i) \triangleq p(x_{t:T}|z_{t-1} = i, u_{t:T})
= \sum_{j=1}^{K} \psi_t(j) \Psi_t(i,j) \beta_t(j).
$$

3.3 Parameter estimation

The parameters of the models are $\theta = (\pi_1, \theta_h, \theta_o)$, where π_1 is the initial state distribution, θ_h are the parameters of the hidden model and θ_o are the parameters of the state-conditional density function $p(x_t|z_t = j, u_t)$. The form of θ_h and θ_o depend on the specification of the model. State transition may be characterized by a logistic or multinomial regression with parameters w_k for $k \in \{1, \ldots, K\}$, while emissions may be modelled with with a linear regression with Gaussian error with parameters b_k and Σ_k for $k \in \{1, \ldots, K\}$.

Estimation can be run under both the maximum likelihood and bayesian frameworks. Although it is a straightforward procedure when the data is fully observed, in practice the latent states $z_{1:T}$ are hidden. The most common approach is the application of the EM algorithm to find either the maximum likelihood or the maximum a posteriori estimates. Bengio and Frasconi (1995) shows a straightforward modification of the EM algorithm. The application of sigmoidal functions, for example the logistic or softmax transforms for the hidden transition model, requires numeric optimization via gradient ascent or similar methods for the M step.

4 Hierarchical Hidden Markov Models

The Hierarchical Hidden Markov Model (HHMM) is a recursive hierarchical generalization of the HMM that provides a systematic unsupervised approach for complex multi-scale structure. The model is motivated by the multiplicity of length scales and the different stochastic levels (recursive nature) present in some sequences. Additionally, it infers correlated observations over long periods via higher levels of hierarchy.

The model structure is fairly general and allows an arbitrary number of activations of its submodels. The multi-resolution structure is handled by temporal experts\footnote{In Machine Learning terminology, a problem is divided into homogeneous regions addressed by an expert submodel. A gating network or function decides which expert to use for each input region.} of different time scales.

4.1 Model specification

HHMM are structured multi-level stochastic processes that generalize HHM by making each of the hidden states an autonomous probabilistic model. There are two kinds of states: internal states are HHMM that emit sequences by a recursive activation of one of the substates, while production states generate an output symbol according to the probability distribution of the set of output symbols.

Hidden dynamics are lead by transitions. Vertical transitions involve the activation of a substate by an internal state, they may include further vertical transitions to lower level states. Once completed, they return the control to the state that originated the recursive activation chain. Then, a horizontal transition is performed. It is state transition within the same level.
A HHMM can be represented as a standard single level HMM whose states are the production states of the corresponding HHMM with a fully connected structure, i.e. there is a non-zero probability of transition from any state to any other state. This equivalent new model lacks the multi-level structure.

Let $z_d^t = i$ be the state of an HHMM at the step t, where $i \in \{1, \ldots, |z^d|\}$ is the state index, $|z^d|$ is the number of possible steps within the d-th level and $d \in \{1, \ldots, D\}$ is the hierarchy index taking values $d = 1$ for the root state, $d = \{2, \ldots, D-1\}$ for the remaining internal states and $d = D$ for the production states.

In addition to its structure, the model is characterized by the state transition probability between the internal states and the output distribution of the production states. For each internal state z_d^t for $d \in \{1, \ldots, D-1\}$, there is a state transition probability matrix A^d with elements $A^d_{ij} = p(z_t^{d+1} = j | z_t^d = i)$ is the probability of a horizontal transition from the i-th state to the j-th state within the level d. Similarly, there is the initial distribution vector over the substates π^d with elements $\pi^d_j = p(z_1^d = j)$ for $d \in \{1, \ldots, D-1\}$. Finally, each production state z_D^t is parametrized by the output parameter vector θ_o whose form depends on the specification of the observation model $p(x_t | z_D^t = j, \theta_o)$ corresponding to the j-th production state.

4.2 Generative model

The root node initiates a stochastic sequence generation. An observation for the first step in the sequence t is generated by drawing at random one of the possible substates according to the initial state distribution π^1. To replicate the recursive activation process, for each internal state entered z_d^t one of the substates is randomly chosen according to the corresponding initial probability vector π^d. When an internal state transitions to a production state $z_D^t = j$, a single observation is generated according to the state output parameter vector θ_o. Control returns to the internal state that lead to the current production state z_D^{t-1}, which in turns selects the next state in the same level according to transition matrix A^{D-1}.

Save for the top, each level $d \in \{2, \ldots, D\}$ has a final state that terminates the stochastic state activation process and returns the control to the parent state of the whole hierarchy. The generation of the observation sequence is completed when control of all the recursive activations returns to the root state.

4.3 Parameter estimation

The parameters of the models are $\theta = \{\{A^d\}_{d \in \{1, \ldots, D-1\}}, \{\pi^d\}_{d \in \{1, \ldots, D-1\}}, \{\theta_o\}\}$. The form of θ_o depends on the specification of the production states.

References

Bishop, Christopher M. 2006. *Pattern Recognition and Machine Learning (Information Science and Statistics).*
Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum Likelihood from Incomplete Data via the
Expectation-Maximization Algorithm.”

Viterbi, A. 1967. “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding
Algorithm.” *IEEE Transactions on Information Theory* 13 (2). Institute of Electrical and Electronics Engineers