IOWA STATE UNIVERSITY **Department of Statistics**

Luis Damiano*, Jarad Niemi

Automatic Dynamic Relevance Determination of soil properties over different soil layers for yield prediction using APSIM

APSIM^[1] (deterministic mechanistic model)

Emulator (AKA surrogate, or meta-model)

A statistical model that provides a mechanistic model output estimate and an associated uncertainty measure without running the computer model.

Why?^[2-3]

- <u>Scalability</u>: large-scale yield prediction.
- <u>Better understanding</u>: model-based information to guide data acquisition, validation, and modeling efforts.
- <u>Better prediction</u>: adjust APSIM prediction at a sub-field level.
- Optimization: yield & NO3 leach trade-off.
- <u>Portability</u>: run it everywhere (e.g., online platform).

https://doi.org/10.1201/9780367815493

Acknowledgements: Funding was provided by lowa State University through the Presidential Interdisciplinary Research Initiative on C-CHANGE: Science for a Changing Agriculture and the Foundation for Food and Agriculture Research (FFAR).

Gaussian Process^[4]

Let $y_i \in \mathcal{R}$ be the APSIM output biomass at harvest date, $\mathbf{x}_{i} = \{x_{i,k}: k = 1, ..., K\}$ the corresponding root water extraction constant values across K soil layers indexed by depth $t_k \in [0, 1]$. Consider a Gaussian process with mean zero and pairwise correlation:

$$\rho(\mathbf{x_i}, \mathbf{x_j}) = \exp\left\{-\frac{1}{2}\left(\mathbf{x_i} - \mathbf{x_j}\right)^\top \mathbf{L}\left(\mathbf{x_i} - \mathbf{x_j}\right)\right\} \forall i, j \in \{1, \dots, N\}$$

$$\mathbf{L}^{-1} = \text{diag}\left(\left\{l_k^2 : k = 1, \dots, K \text{ and } l_k > 0\right\}\right)$$

The role of lengthscale parameter

Smaller lengthscale ~ slower decay of the output correlation as a function of the input Euclidean distance ~ higher predictive relevance

$$\omega_x(t_k) = \ell_x(t_k)^{-2}$$
$$\tilde{x}_{i,t_k} = \sqrt{\omega_x(t_k)} x_{i,k_k}$$

Vector-input lengthscale

It treats the input profile as an unstructured vector of measurements.

$$\{l_1, .$$

Functional-input lengthscale^[5-6]

It recognizes the intrinsic structure of the functional input and **captures how** fast input predictive relevance transitions to a neutral state. $l_x: \mathcal{R}^+ \to (0,1]$

$$l_{\pi}(t)$$

Figure 1: Functional input length-scale and weight functions.

 \ldots, l_K

ears	ofc	ontir	nuous	corn

		2016	2017	2018			
	Vector Input GP	285.5	319.3	284.3			
	Functional Input GP	143.7	131.7	97.2			
	RMSE Reduction	49.7%	58.8%	65.8%			
	Table 1: Out of sample predictive RMSE (10-fold cross validation).						
	Depth interval (cm) r	Cumulat oot biomas	ive C s ^[7] mo	umulative del weight			
	< 14.4	50)%	7.8%			
	< 88.9	95	5%	38.1%			
	< 118.3	100	0∕₀ a	47.3%			
	< 240.0	100% ^b		72.4%			
	< 880.0	-		99.0%			
(240,2e+03]	^a Value estimated by [7] ^b Value reviewed by [7] Table 2: Cumulative root biomass and model weight.						

[5] Morris, M. D. (2012). Gaussian Surrogates for Computer Models With Time-Varying Inputs and Outputs. Technometrics, 54(1), 42-50. https://doi.org/10.1080/00401706.2012.648870